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In the semiclassical treatment, i.e. in a classical black hole geometry, Hawking quanta
emerge from trans-Planckian configurations because of scale invariance. There is indeed
no scale to stop the blueshift effect encountered in the backward propagation toward the
event horizon. On the contrary, when taking into account the gravitational interactions
neglected in the semiclassical treatment, a new UV scale could be dynamically engen-
dered and could stop the focusing. To show that this is the case, we use the large-N
limit, whereN is the number of matter fields. In this limit, the semiclassical treatment
is the leading contribution. Nonlinear gravitational effects appear in the next orders and
in the first of these, the effects are governed by the two-point correlation function of
the energy–momentum tensor evaluated in the vacuum. In this case they can also be
obtained by considering light propagation in a stochastic ensemble of metrics whose
mean fluctuating properties are determined by this two-point function.

KEY WORDS: black hole evaporation; quantum gravity; large-N limit

1. OUTLINE: THE LARGE- N LIMIT

This paper prolongs our contribution to the former Peyresq meeting
(Parentani, 2001a). To ease the reading, we have kept it self-contained. There-
fore certain parts have not been modified. However, in many places the text have
been changed, and many discussions and equations have been added.

Our aim is to compute the quantum gravitational corrections to Hawking
radiation (Hawking, 1975). Since we do not have a theory of quantum gravity,
the first task is to choose an approximative treatment which allows to compute
radiative corrections to some physical quantities. In this paper, we have chosen a
statistical treatment based on a large-N limit, whereN is the number of copies of
the matter field. The reason for this choice are the following.

First, the semiclassical treatmentis the leading contribution in the large-N
limit. This is most simply understood in a path integral approach (Hartle and
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Horowitz, 1981): By performing a saddle point approximation in the evaluation of
the one-loop effective action, one verifies that the location of the saddle is deter-
mined by the semiclassical Einstein equations. Hence, the semiclassical treatment
is a mean field approximation (Hartree) in which theN copies of the radiation field
propagate in a self-consistent classical geometry: a solution of Einstein equations
driven byN times the mean value of the energy–momentum tensor, the one-point
function〈Tµν〉.

This result can also be understood from a diagrammatic point of view in the
following way. One first verifies that the expectation value of any observable can
be expanded as adoubleseries inG and N in which the power ofN is always
smaller or equal to that ofG. One then verifies that the semiclassical value of
this observable corresponds to the resummed series containing all terms governed
only by the one-point function〈Tµν〉. Moreover, all these graphs are one-particle
reducible and their weight is a positive power ofGN. This analysis furnishes an
alternative proof that the semiclassical treatment is the leading contribution and
that it corresponds to a mean field treatment (see the Appendix for more details).

This diagrammatic analysis naturally leads to inquire about the next series.
Upon having first summed up the leading series in powers ofGN, one encounters
a next series containing positive powers ofG2N. This second series is governed
by the connected two-point function〈Tµν(x) Tαβ(x′)〉C, the ‘specific heat’ of the
radiation field. The second reason of having chosen the largeN limit is that non-
perturbative effects can be obtained by resumming this second series (Parentani,
2001b). In fact the central point of this work is to further analyze this procedure.

The third reason which has led us to choose a treatment based on a statistical
basis follows from the so-called trans-Planckian problem. Indeed, in the presence
of the unbounded growth of frequencies encountered near the event horizon, per-
turbative treatments of radiative corrections seem inappropriate (Parentani, 1999).

Let us briefly explain what is the nature of the trans-Planckian problem and
why radiative corrections induced by quantum gravity might give some important
effects when applied to Hawking radiation (or to quantum effects induced by the
presence of an event horizon). When studying theorigin of Hawking quanta one
faces a difficulty which is specific to horizon physics: The configurations giving
rise to Hawking quanta are characterized by ultrahigh frequencies when measured
by infalling observers near the horizon (Jacobson, 1991; Massar and Parentani,
1996; ’t Hooft, 1990, 1996; Unruh, 1981). Indeed, in the semiclassical treatment,
the use of free fields propagating in a given background leads tounboundedfre-
quencies as a direct consequence of the structure of the outgoing null geodesics
near the horizon. Therefore,anyUV scale which would signal the breakdown of
the semiclassical treatment will beinevitablyreached.

This reasoning is nicely illustrated by considering sound propagation in an
acoustic geometry which possesses a horizon: One then finds that the propagation
is dramatically modified with respect to the standard propagation (governed by
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the d’Alembertian) when the UV scale (the interatomic distance) is reached. In
particular, for all nonlinear dispersion relation the focusing stops when the new
scale is reached. The second point which should be emphasized is that this dramatic
modification of the near horizon propagation leaves no imprint on the asymptotic
properties of Hawking radiation when the inverse interatomic distance is well
separated (Broutet al., 1995a; Unruh, 1995) fromκ, the surface gravity of the hole.

Our aim is to show that similar results are obtained when computing non-
perturbatively the gravitational effects driven by the connected two-point function
〈TµνTαβ〉C. We shall find that the trans-Planckian correlations which existed in
the semiclassical treatment are washed out when ther − 2M reaches ¯σ , thenew
length scale which plays the role of the interatomic distance. In the simple model
we shall use, we obtain ¯σ ∝ κ in Planck units. Moreover this washing out mecha-
nism leaves the asymptotic properties of Hawking radiation unaffected: the thermal
flux receives corrections which scale like (κσ̄ )2 and which are therefore negligible
for large black holes.

2. INTRODUCTION

In his original derivation (Hawking, 1975), Hawking considered the propa-
gation of the radiation in afixedbackground metric, that of a collapsing star. This
means that the metric is once for all determined by the energy of the collapsing
star. It is therefore unaffected by the quantum processes under examination. In
this approximation, the radiation field satisfies a linear equation (in the absence of
matter interactions). One then finds that the infalling and outgoing field configura-
tions are completely uncorrelated near the black hole horizon. This is explicitized
by the fact that the connected part of the two-point correlation function ofTuu and
Tvv, the energy–momentum tensors of outgoing and infalling2 configurations, i.e.,

〈Tvv(x)Tuu(x′)〉C = 〈Tvv(x)Tuu(x′)〉 − 〈Tvv(x)〉〈Tuu(x′)〉, (1)

identically vanishes in the vacuum. Nevertheless, Hawking radiation is pair cre-
ation. This is perfectly consistent with Eq. (1) since the pairs are composed of two
outgoing quanta, one of each side of the even horizon. The external ones form
the asymptotic flux whereas their partners fall toward the singularity atr = 0; see
Massar and Parentani (1996) for a detailed description of the space–time proper-
ties of these pairs. Upon tracing over the inner configurations one gets an outgoing
incoherent flux described by a thermal density matrix.3

2 v andu are radial advanced and retarded null coordinates. In the Schwarzschild geometry, they are
given byv = t + r ∗ andu = t − r ∗, wherer ∗ = r + 2M ln(r/2M − 1) is the tortoise coordinate
(Misneret al., 1973).

3 Moreover, one can explicitize the EPR correlations amongst configurations living on each side
of the horizon by computing〈TuuTuu〉C. From Carlitz and Willey (1978) and Masser and Parentani
(1996), one gets〈Tuu(u)Tuu(u′L)〉C ∝ |u− u′L + iπ/κ|4, whereeκuL = κUK > 0, withUK being the
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From this fixed background description, one may go one step further by
performing a mean field approximation, i.e. by including the the metric change
determined by Einstein’s equations driven by the expectation value〈Tµν〉. One
then finds that this expectation value isregular. This is important as it guarantees
that the black hole will adiabatically evaporate while keeping the regularity of the
near horizon geometry. This regularity in turn implies that the infalling and out-
going configurations will stayuncorrelated. Then, as in a fixed metric,〈Tvv〈Tuu〉C
vanishes in the semiclassical treatment.

This adiabatic evolution would provide a reliable starting point for including
perturbatively radiative corrections if another feature of black hole physics was not
present. Namely, the field configurations giving rise to Hawking quanta possess
arbitrary high (trans-Planckian) frequencies near the horizon. When measured by
infalling observers atr , the frequency of an outgoing quantum of asymptotic energy
λ grows as

ω ∝ λ

1− 2M/r
. (2)

This implies that a wave packet centered along the null outgoing geodesicu had a
frequencyω ∝ λ eκu when it emerged from the collapsing star. Unlike processes
characterized by a typical energy scale, the relationω ∝ λeκu shows that black hole
evaporation rests, in this scenario, on arbitrary high frequencies. This analysis of
wave packets is confirmed by the study of the nondiagonal matrix elements of
Tµν which encode the fluctuations of the flux around its mean value. As shown in
Massar and Parentani (1996), contrary to the expectation value (the diagonal part)
which is regular and of the order ofM−4, these matrix elements are generically
singularon the horizon, i.e., their Fourier content is characterized by frequencies
ω which grow according to Eq. (2).

As emphasized by ’t Hooft (1990, 1996), this implies that the gravitational
interactions between the configurations giving rise to Hawking quanta and in-
falling quanta cannot be neglected, thereby questioning the vanishing of Eq. (1).4

In questioning the validity of the semiclassical description, two issues should be
distinguished (see Section 3.7 in Broutet al., 1995b). First, there is the question of
the low frequencyO(κ) changes which can be measured asymptotically, and sec-
ondly, that of the high frequency modifications of the near horizon physics. Since
all thermodynamical reasonings indicate that the asymptotic properties (namely

usual Kruskal retarded time andκ = 1/4M being the surface gravity. (It fixes Hawking temperature
TH = κ/2π . We work in Planck units:c = h = MPlanck= 1.) The smooth maximum of this two-
point function for opposite points, i.e.,u = u′L or UK = −U ′K, is a direct consequence of the fact
that the pairs are composed of two outgoing quanta whose asymptotic temperature is (2π/κ)−1.

4 In Section 9 of the review by ’t Hooft (1990, 1996), one reads “Any decomposition of Hilbert space
in terms of mutually noninteracting field quanta will be hopelessly inadequate in this (near horizon)
region.”
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thermality governed byκ and stationarity) should be preserved, the problem is to
conciliate their stability with the radical change of the near horizon physics which
is needed to tame the trans-Planckian problem. This is not an easy problem: Indeed,
a naive perturbative analysis (Parentani, 1999) of near horizon interactions leads to
back-reaction effects which grow likeω in Eq. (2). This threatens the stationarity
of the flux and therefore questions the choice of the treatment which is adequate
to go beyond the semiclassical approximation.

As a first step toward a full quantum gravitational treatment, inspired by
’t Hooft (1990, 1996), Massar and Parentani (1996), Broutet al. (1995b), Kiem
et al.(1995), Casheret al.(1997), Hu and Shiokawa (1998), Martin and Verdaguer
(2000), and Barrobiset al.(2000), we propose to apply a nonperturbative treatment
based on the connected two-point function〈Tµν(x)Tαβ(x′)〉C. As mentioned in
the Outline, this treatment emerges in a large-N limit. In physical terms, in this
limit, infalling vacuum configurations act as an environment for the outgoing
quanta and their mutual gravitational interactions express themselves in terms of
a stochastic ensemble of metric fluctuations. The specification of vacuum at early
times determines the statistical properties of this ensemble and this, combined
with the nontrivial properties of the black hole metric, introduces a new scale ¯σ

(in terms ofκ) and provides a frame which breaks the 2D local (Jacobson, 1991)
Lorentz invariance.5 Then, the main effect of these interactions is to dissipate
the trans-Planckian modes near the horizon but without affecting the asymptotic
properties of Hawking radiation.

The unsolved question concerns the range of validity of the treatment based
on the two-point function ofTµν . This is a complicated question whose final an-
swer requires a better understanding of quantum gravity. Let us nevertheless make
some remarks. First, this question closely follows that concerning the validity of
the semiclassical treatment which isequallycomplicated.6 Second, our analysis in-
dicates that the semiclassical treatment fails before our treatment. “Before” should
be understood radially, given the blueshift effect encountered during the backward
propagation of configurations specified onJ +, see Eq. (2). What emerges is a kind
of Russian doll structure in which gravity progressively dominates the physics. Far

5 In the vicinity of a black hole horizon, free propagation is governed by a 2D Lorentz (and scale)
invariance in theu, v plane: near the horizon the 4D d’Alembertian reduces to∂u∂vφ = 0 see Eq. (7),
and the Green function is a sum of functions ofu− u′ andv − v′ separately. When including radiative
corrections, the dressed propagator no longer possesses this property. The reasons for this breakdown
of Lorentz invariance are similar to those which give rise to the fact that the self-energy of an electron
immersed in a thermal bath of photons is not Lorentz invariant: In both cases, in the low energy
regime the integrands governing loop corrections are not Lorentz invariant because of the non-trivial
metric in the black hole case and the thermal bath in the other.

6 The validity of the semiclassical treatment has been often questioned in rather general terms. How-
ever, a significant answer requires to find physical quantities (i.e., matrix elements of observables)
which are incorrectly evaluated in this treatmentandto propose improved expressions for the same
quantities in order to see the discrepancy. We shall provide an explicit exemple in Section 6.
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away from the hole (r − 2M À 2M) one has outgoing thermal (on shell) radiation.
In a first intermediate regime ( ¯σ ¿ r − 2M ¿ 2M) the propagation of quanta is
still governed by the d’Alembertian but observers at fixedr and free falling ones
perceive them differently. It is in this regime that Hawking radiation gets estab-
lished, (see Eqs. (76)–(83) in Massar and Parentani, 1996. This description based on
modes stops to be valid when reaching Jacobson’s time-like boundary (Jacobson,
1993), atr − 2M ' σ̄ , when outgoing modes get progressively entangled to the
infalling configurations, thereby loosing their “mode” quality. The principal aim
of this paper is to analyze this transitory regime. Deeper inr − 2M , one has some
unknown regime governed by Planckian physics. This physics presumably also
occurs around us but stays well hidden inside its Planckian husk in the absence of
a good microscope.

2.1. The Relation With Sonic Black Hole Physics

For the interested reader, we now further discuss the relationships between
our approach and the physics of sonic black holes. The starting point of this new ap-
proach to black hole physics is the analogy with condensed matter physics pointed
out by Unruh (1981) (and revisited by Jacobson, 1991, 1993). Unruh noticed that
sound propagation in a moving fluid obeys a d’Alembert equation which defines an
acoustic metric. Therefore, when the acoustic metric corresponds to that of a col-
lapsing star, thermally distributed phonons should be emitted. However, contrary to
photons the dispersion relation of phonons is not linear for frequencies (measured
in the rest frame of the fluid) higher than a criticalωc. Since the frequenciesω > ωc

which were solicited in Hawking’s derivation are no longer available, the station-
arity of the flux is directly threatened. However this does not occur: whenωcÀ κ

the asymptotic properties of Hawking phonons are unaffected (Broutet al., 1995a;
Jacobson, 1996; Unruh, 1995) in spite of the fact that the near horizon propagation
of the phonon field drastically differs from that of photons when the blueshifted
frequency reachesωc which acts like ¯σ−1. The appealing feature of these models
is to provide both, a simple explanation (in terms of adiabaticity which essentially
follows from scale separationωcÀ κ) for the robustness of the asymptotic prop-
erties of the flux, and a simple physical reason (a modified dispersion relation)
which eradicates the ultrahigh frequencies. (It should be pointed out that a similar
trans-Planckian problem arises in inflationary models when studying the origin of
the spectrum of primordial energy density fluctuations (Jacobson, 1999; Martin
and Brandenberger, 2001; Niemeyer, 2001). In that case as well, scale separation
and regularity of the metric are sufficient conditions to guarantee that the properties
of the spectrum are unmodified (Niemeyer and Parentani, 2001).)

Besides the robustness of the IR properties, the main outcome of these con-
siderations is that anew universalityhas emerged: forall dispersion relations but
the linear one, the blueshift effect stops. Therefore, the never ending blueshifting
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effect obtained by using the linear (scaleless and nondispersive) relationÄ = p
now appears as an isolate and unstable behavior. Thus, instead of asking if Hawking
radiation is robust against modifying the dispersion relation, we are let to question:
isÄ = p robust ? or it is simply an artifact of free field theory?

These considerations suggest that quantum gravity should engender a new
UV scale when evaluating radiative corrections in a black hole geometry. This
new scale would then break the scale invariance of free field propagation and pre-
vent the appearance of trans-Planckian frequencies (Broutet al., 1995b; Jacobson,
1996; Masser and Parentani, 1996). To verify this conjecture, one must determine
the physical effects induced by thenonlinearitiesengendered by gravitational in-
teractions. When this is done, one can indulge in the luxury of making contact with
dumb holes physics (Velicky, xxxx) by analyzing if/why the effects of nonlineari-
ties can be reproduced by an effective linear equation (i.e., a nontrivial dispersion
relation) governing outgoing propagation.

3. THE MODEL

For simplicity, we shall consider only s-waves propagating in spherically
symmetric space–times. For definiteness, the background metric is taken to be that
resulting from the collapse of a null shell of massM0 which propagates along
the null rayv = 0. Inside the shell, forv < 0, the geometry is Minkowski and
described by

ds2 = −(1− 2M(v)

r
) dv2+ 2dv dr+ r 2(dθ2+ sin2 θ dφ2) (3)

with M = 0. Outside the shell, the metric is Schwarzschild and given by Eq. (3)
with M(v) = M0. As we shall see, this choice of the collapsing metric will have no
influence in what follows since we shall focus on the vacuum interactions occurring
near the horizon, outside the collapsing matter.

To identify the degrees of freedom involved in these interactions, we first
analyze the global properties of radial modes, when working in the geometric optic
approximation, i.e., when working with∂u∂vφ = 0. (In the exact d’Alembertian,
see Eq. (7), there is a potential aroundr = 3M which induces partial reflection,
a phenomenon irrelevant for our purposes.) The ingoing massless waves fall into
two classes according to their support onJ −, the light-like past infinity. The waves
in the first class have support only forv < 0, inside the shell, and will be noted
φ−. They propagate inward in the flat geometry tillr = 0 where they bounce off
and become outgoing configurations (see Fig. 1.) The relationship between the
value ofu of the geodesic which originates fromv on J − is (Barrabès, 2000):
V(u) = −4M(1+ e−ku). The first class is thus divided in two subsectors: For
v < −4M , the reflected waves cross the infalling shell withr > 2M and reach the
asymptotic region whereas those for 0> v > −4M cross the shell withr < 2M
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Fig. 1. Penrose diagram of the background geome-
try. The light-like infalling shell propagates alongv =
0. The other continuous line emerging fromJ − is
v = vH, the radial light ray which forms the event hori-
zon after having bounced onr = 0. The dashed line rep-
resents a characteristic of the configurationsφ− which
are responsible for Hawking quanta. The dotted line
represents a partner’s characteristic. For quanta reach-
ing J + at lateu, both of these characteristics are ex-
tremely close tovH, (see Eq. (5)). The configurations
φ+ have support forv > 0 and are always infalling. In
this paper, we shall study the interactions betweenφ−
andφ+ which occur outside the star in the near horizon
empty region, and when the state ofφ+ is vacuum.

and propagate in the trapped region till the singularity. The separating light ray
vH = −4M becomes the future horizonu = ∞ after bouncing off atr = 0. The
configurations which form the second class live outside the shell, have support only
for v > 0 and are notedφ+. They propagate in the static Schwarzschild geometry,
are always infalling and cross the horizon toward the singularity.

In Hawking’s derivation of black hole radiation, the field operator also obeys
the d’Alembert equation. Hence the above classical (on-shell) properties also ap-
ply: The configurations forv < vH give rise to the asymptotic quanta and those
for vH < v < 0, to their partners (Massar and Parentani, 1996) whereasφ+ plays
no role in the asymptotic radiation. For further details concerning the properties of
Hawking radiation, we refer to the review by Broutet al. (1995b). One also finds
that the correlations between the asymptotic quanta and their partners follow from
the fact that, onJ − and in the vacuum, the rescaled fieldφ =

√
4πr 2χ (whereχ

is the 4Ds-wave) satisfies

〈φ(v)φ(v′)〉 =
∫ ∞

0

dω

4πω
e−iω(v−v′) = − 1

4π
ln(v − v′ − i ε)+ constant. (4)

Since this equation is valid for allv, v′ one might think that there also exist cor-
relations betweenφ− andφ+. However, for late Hawking quanta, they effectively
vanish since these quanta and their partners emerge from configurations which
are localized extremely close tovH . This follows from the asymptotic (κuÀ 1)
behavior of the relationV(u)

V(u)− vH ∝ e−κu. (5)

As shown in Hawking (1975), this exponential is responsible for the thermal ra-
diation at temperatureκ/2π . It also shows that the quanta emerge from trans-
Planckian frequencies onJ − sinceω dV = λ du, whereω = i ∂v on J − and
λ = i ∂u onJ +.
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In brief, in the absence of gravitational interactions,φ− andφ+ are effectively
two independent fields. By independent we mean that by sending quanta described
by wave packets built withφ+ only, there isno induced emission of Hawking
quanta. Indeed, in order to get induced emission (Wald, 1976) at timeu, one should
sendφ− quanta localized close tovH as indicated in Eq. (5) and correspondingly
characterized by frequenciesω ∝ λ eκu À κ.

Let us now analyze more closely how these properties translate in the Fock
space ofφ. When evaluated in the background metric (3), the action ofφ is

Sφg = −
∫

dvdr

[
∂vφ∂rφ +

(
1− 2M

r

)
(∂rφ)2

2

]
(6)

with M(v) = 0 for v < 0 andM(v) = M0 for v > 0. Being interested in the near
horizon physics, we have dropped the potential term ofs-waves, (2M0/r 3)φ2,
since it does not affect the near horizon propagation. This can be seen by using the
double null coordinate systemu = v − 2r ∗, v. Using them, the 4D d’Alembertian
reads [

∂u∂v −
(

1− 2M0

r

)(
l (l + 1)

r 2
+ 2M0

r 3

)]
φl = 0, (7)

whereφl is the rescaled mode of angular momentuml . Thus, as emphasized in
Kiem et al. (1995), the propagation of waves (at fixed angular momentum and
even for an arbitrary mass) effectively obeys a 2D conformal invariance in the near
horizon geometry.7 This is confirmed by the fact that, classically, the trace of 2D
part of Tµν vanishesoff-shell. Thus, in our model fors-waves,Tµν has only two
q-number components,Tvv = (∂vφ)2 andTuu = (∂uφ)2.

When consideringφ in second quantization, the 2D conformal invariance
implies that the Fock space is composed of tensorial products of infalling states
(on whichφ+ acts) and outgoing states. In a Schroedinger language this means that
an initially factorized state (i.e.,|9〉 = |9+〉 ⊗ |9−〉) remains factorized when its
evolution is governed by Eq. (6). This absence of entanglement between the two
sectors explains the above-mentioned absence of induced emission when adding
a fewφ+ quanta.

In a Heisenberg language, it tells us that any matrix element ofφ is a combi-
nation of matrix elements ofφ− andφ+ evaluated separately. This implies in par-
ticular that the connected part of the two-point correlation (1) identically vanishes
for all factorized states. This applies to the “Unruh” vacuum, the state describing
Hawking radiation. Physically, the vanishing of Eq. (1) means that thefluctua-
tionsof Tvv andTuu around their mean values are completely uncorrelated. This

7 This invariance leads to the trans-Planckian problem: the steady production rate of outgoing quanta
arises from an integral over in-frequenciesω whose measure is that of a 2D massless field. Explicitly
one obtains that the thermal distribution is multiplied bydω/ω = κ du sinceω ∝ eκu (see Eq. (2)).
For more details see Parentani (1999) or Eq. (2.54) in Broutet al. (1995b).
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is just another way to say that there cannot be induced emission ofφ− by φ+. It
should also be clear that this absence of quantum correlations is precisely what is
contested by t’Hooft (see Footnote 3).

Finally, in spite of this absence of correlation, we mention that the mean value
of Tvv andTuu are related to each other by energy conservation through the 2D
trace anomaly (Davieset al. 1976). However, this new component ofTµν does
not fluctuate: it is ac-number. Hence it cannot play any role in the gravitational
interactions betweenφ− andφ+.

4. THE GRAVITATIONAL INTERACTIONS BETWEEN φ− AND φ+

The aim of this section is to obtain the dominant part of the action govern-
ing the gravitational interactions betweenφ− andφ+. In the next sections, we
shall study the consequences of these interactions with particular emphasis on the
correlations they induce.

The generating functional governing our matter-gravity system is

Z =
∫
DφDh ei [Sφg+h+Sh,g] . (8)

h is the change of the metric with respect to the backgroundg discussed above
andSh,g is the Einstein–Hilbert action.Sφg+h is the action ofφ propagating in the
fluctuating geometryg+ h.

When the metric fluctuations are spherically symmetric,h can be character-
ized by two functions:ψ , andµ. Moreover both are completely determined by the
energy–momentum tensor ofφ. This is like the longitudinal part of the electro-
magnetic field which is constrained to follow the charge density fluctuations, by
Gauss’ law. The line element in the fluctuating metric can be written as (Barrab`es
et al., 2000)8

ds2 = eψ
[
−
(

1− 2M̃

r

)
dv2+ 2dv dr

]
+ r 2dÄ2

2 (9)

whereM̃ = M0+ µ(v, r ) for v > 0. In this new metric, the matter action is the

8 This line element differs from that used by Bardeen (1981):

ds2 = eψ
[
−eψ

(
1− 2M0 + 2µB

r

)
dv2 + 2dv dr

]
+ r 2dÄ2

2.

Theψ function is the same whereas, to first order inψ andµB, µ = µB − ψ(r − 2M0)/2. The
usefulness of our choice is thatψ no longer affects the null geodesics. We also recall that Einstein’s
equations read∂vµB = Tvv − Tuu and∂r ∗ψ = 4Tuu/(r − 2M), when expressingTµν in terms of
the null fluxesTvv, Tuu.
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same as in Eq. (6):

Sφg+h = −
∫

dv dr

[
∂vφ∂rφ +

(
1− 2M̃

r

)
(∂rφ)2

2

]
. (10)

The new mass functioñM incorporates the only relevant metric changeµ. In-
deed,Sφg+h is independent ofψ , thereby recovering the 2D conformal invariance
mentioned earlier.

Our aim is to work out the first-order corrections due to the gravitational
interactions betweenφ− andφ+. To this end only quadratic terms inh should be
kept inSh,g. The Gaussian integration overh can be performed (this is equivalent
to solve the linearized Einstein’s equations). It gives rise to a self-interacting field
theory described by

Z =
∫
Dφ ei Sφg+i Sint . (11)

By constructionSint is a nonlocal quadratic form9 of the energy–momentum
tensor ofφ.

To identify the relevant part ofSint we first recall thatTµν has only two fluctu-
ating components, thanks to the 2D conformal invariance. Thus, in a perturbative
treatment (such as the interacting picture) one obtains two types of interaction terms
only. First one has self-interaction terms depending onφ− orφ+ separately. These
terms do not destroy the factorizability of the theory and will not be considered in
what follows.10

Secondly, one has a cross-term couplingφ− toφ+. The essential point is that
this term will inevitably break the factorizability of the theory into the± sectors.
Therefore, the two-point function Eq. (1) will no longer vanish. Let us analyze the
cross-term couplingφ− to φ+. Since infalling configurations obey∂rφ+ = 0 even
in the presence of gravitational interactions, the cross-term couplingφ− to φ+ is

9 In thet, r coordinate system, i.e., whengrt = 0, Sint is given by a linearized version (see Eq. (90) in
Massar and Parentani, 1996) of the BCMN Hamiltonian (Berger, 1972).

10The validity of this radical simplification (also adopted in Casheret al., 1997; Kiemet al., 1995;
’t Hooft, 1990, 1996) requires further analysis. We hope to be able to report on it in the near
future. On-shell, theφ+ φ+ contribution toSint vanishes. This can be understood from the fact
that the Vaidya metric (2) is an exact solution for any classical infalling massless fluxTvv(v).
The φ− φ− contribution toSint is more tricky to handle in the advanced coordinatesv, r . The
reason is that infalling geodesics are affected by the presence of an outgoing fluxTuu (as clearly
seen when using the coordinatesu, r ). This modification translates inv, r into a deformation of
the description of outgoing geodesicsu = u(v, r ) and it is this effect which is responsible for
the φ−φ− contribution toSint . Let us finally notice that a nonperturbative treatment of the self-
interactions ofφ− has been developed in Kraus and Wilczek (1995) and Massar and Parentani
(2000). It leads to small effectsO(κ/M) and induces no damping of the waves when approaching the
horizon.
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(see Eq. (10))

Sint = G
∫ ∞

0
dr
∫ ∞

0
dv
µ+(v)

r
(∂rφ−)2 (12)

whereG is Newton’s constant. We have introduced it in the front ofµ to read more
easily the order of the interactions betweenφ− andφ+ in the forthcoming equations.
µ+(v) is the mass fluctuation driven byφ+. Einstein’s equations constrain is to be

µ+(v) =
∫ v

0
dv′Tvv(v

′) =
∫ v

0
dv′ (∂v′φ+)2. (13)

The reader might be surprised by the fact that we are using on-shell fields
φ± in Sint . In principle indeed, only the off-shell fieldφ should be used in the
action. However, when calculating perturbatively lowest order corrections inG,
this amounts to use Eq. (12) as it stands.

We are now in position to show that the gravitational interactions between
φ+ and φ− diverge on the horizon. To this end, let us consider two classical
fluxes described respectively byTvv = Äδ(v − v0) andTuu = λ δ(u− u0).Ä and
λ are the asymptotic energies measured onJ − and J + respectively, andv0

and u0 are such that the two spherical shells meet atr0 in the near horizon
geometry, forr0− 2M ¿ 2M . In this case, usingr0− 2M ' 2M eκ(v0−u0) one
obtains

Sint ' 4G
Äλ

r0/2M − 1
. (14)

The actionSint diverges asr0→ 2M like ω did it in (3). The difference with (3)
is that Sint is a scalar. Hence the divergence in Eq. (14) is coordinate (gauge)
invariant.

By considering two shells whose energy is Hawking temperature, i.e.Ä =
λ = κ, Sint ' 1 gives us a naive estimate of where the gravitational interactions
become strong, i.e., can no longer be ignored. The conditionSint = 1 is reached for
r0/2M − 1= Gκ2 (= 1/M in Planck units). This naive estimate will be recovered
in Section 6 when considering radiative corrections in thevacuum.

We should perhaps emphasize this last point: even though our approach
closely follows that of ’t Hooft (1990, 1996) (it can be considered as an s-wave
reduction of it) we shall not study the interactions betweenφ+ andφ− quanta.
Rather we shall focus on the residual interactions when the state ofφ+ is vacuum.
For earlier attempts in this direction, we refer to Kiemet al. (1995) and Casher
et al. (1997). Before analyzing these second quantized effects, it is instructive to
solve two preparatory exercises with on-shell fluxes.

In the first we shall show thatSint acts only as a shift operator of the asymptotic
value ofu. In spite of this simplicity, in the second exercise, we show thatSint

nevertheless engenders an entanglement which prevents the factorizability of the
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states into± sectors. This provides an explicit example of a quantum effect induced
by Eq. (12), which is absent in the semiclassical description.

5. NONVACUUM GRAVITATIONAL EFFECTS

Let us consider the following problem: Givenφ0
+ onJ − andφ0

− onJ +, what
is the value of the field amplitudeφ near the horizon?

Because of the 2D conformal invariance, the scattered amplitudeφ still de-
composes asφ+ + φ−. Then, since∂rφ+ = 0 is exact in our gauge whereinv stays
light-like in the presence of gravitational interaction,φ+(v) = φ0

+(v). Thus the
infalling flux of energy is unaffected by the energy carried byφ− and it is given by
Tvv = (∂vφ

0
+)2. Hence,µ+ of Eq. (13) acts as a given metric change in the equation

of motion ofφ−: [
2∂v +

(
1− 2M0+ 2Gµ+(v)

r

)
∂r

]
φ− = 0. (15)

Since this equation is linear inφ− and first order in the space–time derivatives, its
exact solution is

φ−(v, r ) = φ0
−(uµ(v, r )), (16)

whereuµ(v, r ) is the outgoing null geodesic in the modified metric characterized
by M0+ µ+(v). The modified geodesicuµ(v, r ) also obeys Eq. (15) with the
boundary condition that it converges to the unmodified valueu0(v, r ) = v − 2r ∗

for r →∞. To first order inG, the changeδu = uµ − u0 is determined by a
nonhomogeneous equation11 whose solution is

δu(v)|u0 = G
∫ ∞

v
dv′

2µ+(v′)
r (v′)|u0 − 2M0

, (17)

wherer (v)|u0 is obtained by invertingu0(v, r ) = v − 2r ∗. The important point is
that, once more, the integral in Eq. (17) is dominated by the near horizon region
wherer (v)|u0 − 2M0¿ 2M0.

The lesson we got from Eq. (16) is that the eikonal approximation is exact:
the scattered value of the field amplitude is given by its asymptotic value evalu-
ated along the modified characteristicuµ(v, r ). Thus, classically, the gravitational
interactions encoded in Eq. (12) only induce a shift of the argument of field and do
not induce nonlinearities in the field amplitude. (The origin of this miracle is the
2D conformal invariance. This is not a new remark; see e.g. Kiemet al., 1995.)

In spite of this absence of nonlinearities in the field amplitude, we shall
now prove that the quantum evolution governed by the actionSg + Sint dynami-
cally engenders entanglement between the otherwise uncorrelated± sectors. To

11Using the fact that 2∂v + (1− 2M0/r )∂r defines 2∂v|u0 (by definition ofu0(v, r ) = constant),δu
obeys∂v|u0δu = (µ+/r )∂r |vu0, thereby giving Eq. (17).
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this end, let us consider the evolution of an initially factorized wave function
|9 in〉 = |9 in

+〉 ⊗ |9 in
−〉. The infalling part|9 in

+〉 is specified onJ − for v > 0. More-
over, to clearly exhibit the entanglement, we choose|9 in

+〉 to be a superposition of
two well-defined and separated wave packets

|9 in
+〉 = A|9 in,a

+ 〉 + B|9 in,b
+ 〉. (18)

By well-defined and separated we mean that the two fluxes associated with each
component,〈Ti

vv〉 ≡ 〈9 in,i
+ |Tvv|9 in,i

+ 〉 with i = a, b, are localized and separated
from each other. This implies that the overlap between|9 in,a

+ 〉 and|9 in,b
+ 〉 vanishes.

The outgoing piece of the initial ket,|9 in
−〉, is specified onv = 0+, just outside

the infalling matter engendering the black hole. We could have specified it onJ −
for vH < v < 0. However, we have chosenv = 0+ outside the star, for having to
deal neither with the reflection onr = 0 nor with the interactions with the infalling
star matter.

Having specified the initial state, we study the quantum dynamics. As in
classical terms, the∂rφ+ = 0 now viewed as an Heisenberg equation tells us that
the evolution in the+ sector is trivial. Therefore, in the interacting picture, the
action of the evolution operatorei Sint on the total wave function|9 in〉 will give
rise to two uncorrelated evolutions for the− sector: one in thea-modified metric
characterized by thec-number massM = M0+ µa

+ with

µa
+(v) =

∫ v

0
dv′ 〈Ta

vv(v
′)〉, (19)

and the other one in theb-modified metric. Thus the final value of the wave function
(on the union of the event horizon andJ +) is

|9〉 ≡ ei Sint |9 in〉 = ei Sint

[(
A|9 in,a

+ 〉 + B|9 in,b
+ 〉

)
⊗ |9 in

−〉
]

= A|9 in,a
+ 〉 ⊗ ei Sa

int |9 in
−〉 + B|9 in,b

+ 〉 ⊗ ei Sb
int |9 in

−〉. (20)

Si
int are the two interaction hamiltonians acting on|9 in

−〉. They are given by Eq. (12)
with the corresponding the metric changesµi

+, i = a, b.
The entanglement induced bySint acts, as usual, as a measurement: Consider

for instance the Stern–Gerlach experiment wherein the center of mass motion is
determined by the spin projection of the electron which is moving in a magnetic
field. The mapping from that situation to the present one is as follows. The two kets
representing the spin projections are here played by the two infalling states|9 in, i

+ 〉.
The center of mass wave function is played by the outgoing wave function|9−〉
and the interaction Hamiltonian isSint of Eq. (12). The analogy works quite well
when the initial outgoing wave function|9 in

−〉 is well peaked. Then, its “image” on
J + would beeithera spot atu0+ δua with probability |A|2, or one atu0+ δub

with probability 1− |A|2. u0 is the location of the spot when the gravitational
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interactions are ignored and the values of the shiftsδua, andδub are given by
Eq. (17) fed by the mass changesµa

+ andµb
+ respectively.

This quantum result should be compared with what would have been obtained
by using the semiclassical treatment, i.e., by using themeanmass change

µ̄+(v) = |A|2µa
+(v)+ |B|2µb

+(v) (21)

instead of each mass change separately, (see Eq. (19)). The semiclassical treatment
incorrectly predicts a single spot onJ + located at the “mean” positionu0+ δū
with δū = |A|2δua + |B|2δub.

The validity of the semiclassical treatment rests on the possibility in neglect-
ing the fluctuations in the operator-valued mass function ˆµ = ∫ dv T̂vv, which is
determined by the fluctuation of the infalling flux̂Tvv, and which determines in
turn the fluctuations of the operator-valuedδu through Eq. (17). Thus, the physical
importance of the mass fluctuations is governed on one hand by the connected part
of two-point function〈TvvTvv〉C which characterizes the fluctuations ofTvv, and on
the other by the amplification of the effects through the denominator in Eq. (17).
Even the relative importance of〈TvvTvv〉C with respect to the mean square flux
〈Tvv〉2 is small in the two evolutions, the exact one and the semiclassical differ, i.e.,
the semiclassical treatment leads to incorrect predictions, when the fluctuations
are sufficiently amplified by the denominator in Eq. (17). Instead in the absence of
amplification, the mean theory is always correct, unlessµa(v)− µb(v))/M ' 1,
but in this case the notion of a classical background completely fails.

In brief, the crucial point is the following: Unlike what one encounters
in usual circumstances, i.e., without an event horizon, tiny fluctuations ofTvv

might give rise to large shifts inu because of the amplification due to the growth
of the gravitational interactions when the configurations meet near an event
horizon.

5.1. Relationship With Former Treatments

Before considering second quantized effects, it is also interesting to relate
Eq. (11) to the former treatments of black hole evaporation discussed in the liter-
ature: Hawking’s approach (Hawking, 1975) and the semiclassical treatment.

Hawking’s approach characterized by a fixed geometry is recovered by putting
Gµ+ = 0 in Eq. (11). ThenZ factorizes asZ+ ⊗ Z− (when ignoring the trace
anomaly) andφ− is a free outgoing field propagating in the background ge-
ometry g. Thus φ+ drops out fromall matrix elements built with the opera-
tor φ−. It should be emphasized that the trans-Planckian problem (e.g., the fact
that thein–out Green function is characterized by trans-Planckian frequencies
when one of the operator approaches the horizon; (Massar and parentani, 1996;
Barrabèset al. 2000)) encountered in Hawking’s approach directly follows from
this factorizability. Indeed, it is theabsenceof gravitational coupling between the
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+ and− sectors which permits the unbounded growth of frequencies when prob-
ing, near the horizon, configurations specified onJ +.

The semiclassical treatment (Bardeen, 1981; Massar, 1995; Parentani and
Piran, 1994) can be obtained from the path integral formalism (8) by first integrating
over φ at fixed h and then searching for the classical extremum ofh. In this
approach, by construction, the fluctuations ofh andTµν are neglected. Thus the
near horizon propagation ofφ is governed by aself-consistentmetric governed by
mean〈µ+(v)〉. This mean evolution characterizes by the shrinking of the horizon
area according to

d〈µ+(v)〉
dv

= 〈Tvv〉|r=rhorizon=2M . (22)

When working in the vacuum equation (4), the (properly subtracted; (Broutet al.,
1995b)) expectation ofTvv is

〈Tvv(v)〉|r=2M(v) = − π
12

(
κ(v)

2π

)2

, (23)

whereκ(v) = (4M(v))−1 with M(v) = M0+ G〈µ+(v)〉. This flux has the opposite
value of a 2D thermal flux. The only change with respect to the fixed background
approach of Hawking is the replacement ofM0 by M0+ G〈µ+〉. Thus the propa-
gation of outgoing configurations is hardly affected by the evaporation as long as
it is slow, i.e., as long asM(v)À MPlanck.

Therefore, in the semiclassical scenario, the trans-Planckian problem stays
as in Hawking’s approach: the coupling betweenφ− and the mean change〈µ+〉 is
incapable to provide a taming mechanism since it does not open new interacting
channels. To solve this problem clearly requires to take into account thefluctuating
character of the interactions betweenφ− andφ+, i.e., the possibility of entangling
their wave functions, as in the quantum mechanical exercise presented above.

6. MODIFIED GREEN FUNCTION

Our aim is to show how the two-point Green function ofφ−

G(x1, x2) =
∫
Dφφ−(x1)φ−(x2) ei Sg+i Sint

Z
, (24)

whereZ is given in Eq. (11), is affected by the gravitational interactions encoded
in Sint when the infalling configurations are in their vacuum state.12

12Being in the search of a new scale induced by vacuum effects, we should reconsider the simplification
of having kept only the+,− interaction term inSint , c.f., the discussions after Eq. (11). The neglect
of the other terms might indeed fallaciously engender the new scale; more on this delicate problem
when considering the value of the cutoff, after Eq. (31).
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To evaluate Eq. (24) beyond the semiclassical treatment, one should adopt
some rules to cope with the UV divergences. The scheme we propose consists in
consideringN copies ofφ. The calculation of Eq. (24) can then be achieved in
two different approaches. The first consists integrating first over theN − 1' N
spectator copies not appearing in the numerator in so as to determine the influence
functional (IF) (Feynman and Hibbs, 1965) governing the effective dynamics ofφ.
The other consists in developingei Sint in both integrands of Eq. (24) in powers of
Sint so as to engender the (connected) Feynman diagrams governing the radiative
corrections.

The usefulness of the IF approach is that nonlinear effects are naturally taken
into account through the effective action forφ. The same nonlinear effects can of
course be reached from the Feynman diagrams approach at the cost of summing
infinite subsets of graphs. It is in theidentificationof these infinite subsets that
the largeN limit finds its real justification. For a schematic description of these
diagrammatic aspects, we refer to the Appendix. In what follows, we shall pursue
with the IF approach.

When computing the lowest order corrections to the self-energy in Eq. (24),
we can use Eq. (4), the “free” propagator ofφ+. This approximation concerning
degrees of freedomnot directly involved in the matrix elements (i.e., which fac-
torized out in the absence of interactions) is a common procedure both in quantum
field theory where it gives the vacuum contribution, (see Chapter 9 in Feynman
and Hibbs, 1965), and in statistical mechanics (e.g., thepolaron, Chapter 11). In
our case, in this approximation, the IF gives rise to a nonlocal action which is a
sum of terms containing (∂rφ−)2 and kernels given by the Wick contractions of
Tvv evaluated with Eq. (4).13 To orderG2, one obtains

SIF = i 〈SintSint〉+ = iG2N
∫

d2x
∫

d2x′ (rr ′)−1(∂rφ−)2 〈µ+(v)µ+(v′)〉(∂r ′φ−)2,

(25)
where〈 〉+ means that the expectation value applies toφ+ only. Using Eq. (4),
the connected two-point function is

〈Tvv(v) Tvv(v
′)〉C = 1

16π2

1

(v − v′ − i ε)4
. (26)

Then, Eq. (13) gives

〈µ+(v)µ+(v′)〉 = 1

96π2

1

(v − v′ − i ε)2

13In general, when one does not make this approximation, the Wick contractions ofφ+ will give rise
to a series in powers ofG which starts with Eq. (26) and whose higher order terms depend onφ−.
Thus Eq. (26) would have become operator-valued (Kiemet al., 1995) inφ−, thereby obtaining a
situation analogous to that of transition amplitudes when enlarging the phase space so as to take into
account recoil effects Parentani, 1995.
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= 1

96π2

∫ ∞
0

dωω exp[−iω(v − v′)]. (27)

This equation gives the mean metric fluctuations driven byφ+ in the unper-
turbed (G = 0) vacuum state; (see Martin and Verdaguer (2000) for a analysis of
the 4D two-point function of induced metric fluctuations in Minkowski vacuum.
Notice that〈µ+(v)µ+(v′)〉 is not real. This follows from the quantum vacuum
which contains only positive frequencies when hit byφ (see Eq. (4)). Notice that
Eq. (26) gives the “unsubtracted” value of the connected two-point function. As
shown in Tomboulis (1977), the counterterms which lead to the renormalized one-
point function (23) also provide divergent contributions to eq. (26) which tame its
singular behavior asv→ v′.

Keeping only Eq. (25) in the IF (or by summing the corresponding infinite set
of Feynman graphs; see the Appendix) is equivalent to work with a stochastic (i.e.,
a classically given) Gaussian ensemble of metric fluctuations. By “equivalent” we
mean that all matrix elements ofφ−, such as Eq. (24), can be computed from this
stochastic theory. Thus as far as the propagation ofφ− is concerned and to lowest
order inG, the functional integration overφ+ in Eq. (24) effectively engenders a
stochastic ensemble of metric fluctuations governed by Eq. (27).

Hence all the techniques developed in Barrab`eset al. (2000) apply. In what
follows we shall present schematically the main results and we refer to this work
for details. The key point is the following. Because of the Gaussianity of the
ensemble, one can obtainnonlinearcorrections to Eq. (24) from the fluctuating
characteristics of Eq. (15), i.e., the outgoing null geodesicsuµ(v, r ), the non-trivial
solutions ofds2 = 0 in the fluctuating metric (9). In this we recovered that there is
no nonlinearities in the field amplitude: as in Section 5 the scattering only occurs
through the characteristics.

To determine the effects engendering these metric fluctuations, it is instructive
to analyze the backward in time propagation of asymptotic plane waves represent-
ing Hawking quanta. The reason for this is that, in a fixed background, the Fourier
transform of thein–outGreen function performed onJ + obeys∫

du eiλuGin–out(u, v = ∞; v, r ) ∝ φ∗λ(v, r ) ∝ eiλu(v,r ). (28)

In the absence of metric fluctuations,u(v, r ) = u0(v, r ) = v − 2r ∗. Hence near
the horizon the plane wavee−iλu behaves as

e−iλu0(v,r ) ' θ (r − 2M0) e−iλv(r − 2M0)i κλ. (29)

It vanishes forr < 2M0 and possesses an infinite number of oscillations asr →
2M0 with increasing momentumpr = −i ∂r e−iλu0(v,r ) = 4M0λ/(r − 2M0). This
is the trans-Planckian problem.
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In a Gaussian ensemble of metric fluctuations the averaged waves are given
by

〈e−iλuµ(v,r )〉 = e−iλu0(v,r ) e−
λ2

2 〈δu(v)δu(v)〉. (30)

Using Eq. (17), the fact thatr0(v)|u0 − 2M0 ' 2M0 eκ(v−u0), and Eq. (27), one
obtains

〈δu(v)|u0δu(v)|u0〉 =
G2N

(r/2M0− 1)2

∫ 3

0

dω

3

[
κ2ω

κ2+ ω2
+ i

κω2

κ2+ ω2

]
= σ̄ 2

3

1

(r/2M0− 1)2
+ i (σ̄ disp

3 )2 1

(r/2M0− 1)2
. (31)

The spread ¯σ3 governs the damping of the backward propagated wave and is
equal toGκ

√
N ln(3/κ)/3 when the UV cutoff3 satisfies3À κ. We have

introduced3 to define the two integrals overω. Notice that it is a Lorentz scalar,
since it is the energy of an s-wave in its rest frame. The imaginary contribution in
Eq. (31) defines ¯σ disp

3 and controls thedispersionof the wave, i.e., theλ dependent
modifications of the locus of constructive interferences. When3À κ, one obtains
σ̄

disp
3 ' G

√
Nκ3.

The first result of Eq. (31) is that ¯σ3 is not proportional to3 even though
〈µ2
+〉 ' 32. Notice also that ¯σ3 hardly depends on the value14 of3 sinceσ̄3=4M =√
2σ̄3=1. This is because high frequencies (ω À κ) are damped by the integration

over v′ in Eq. (17). The frequenciesω ' κ dominate the real contribution in
Eq. (31).

The second result of Eq. (31) is that〈δuδu〉 diverges asr → 2M0. Thus the
correlations between asymptotic quanta and early configurations, which existed in
a given background as shown in Eq. (29), are washed out by the metric fluctuations
oncer − 2M0 ' σ̄3 ' 1/M0. The reason of this loss of coherence is that the
state ofφ− becomes correlated to that ofφ+ (’t Hooft, 1990; Kiemet al., 1995).
Physically, this loss of coherence implies that induced emission (Wald, 1976) no
longer exists when the threshold energy 1/σ̄ is reached.15 Phenomenologically
this loss can be viewed as a dissipation of outgoing waves, and, as in condensed

14In the simplified treatment we are using, the value of3 must be chosen from the outset. Instead,
in an improved treatment where all terms are kept inSint, we believe that the values of ¯σ , σ̄ disp

shall be unambiguously determined. In that case, when using the properly subtracted (Tomboulis,
1977) two-point function〈TµνTαβ 〉, onlyω ' κ will contribute to the ¯σ ’s. Indeed in the UV domain
all expressions become Minkowskian in character and hence cannot contribute to Lorentz breaking
effects such as those engendered by ¯σ . This result can be implemented in our truncated model by
putting3 ' κ in Eq. (31), thereby obtaining ¯σ ' σ̄ disp' Gκ.

15An interesting and unsolved question raised by this loss is whethernewcorrelations are induced
by the gravitational interactions as the same time as the old ones are washed out by them. This is
presently under study.
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matter (Hu, 1998; Velicky, 1999), it can be described by a non-trivial dispersion
relation, (see Eqs. (5.9) and (5.11) in Barrab`eset al., 2002).

We should further explain the physical relevance of these results. To this
end, one must identify the matrix elements ofφ− which are highly sensitive to
the metric fluctuations (and governed by the ensemble averaged waves (30)) and
those which are not. The simplest example of an operator which is sensitive is
the in–out Green function with one operator atv, r and the other onJ +. Indeed
since the ‘second’ point lives onJ + where theout vacuum is defined, the phase
of the out-wave function evaluated at fixedu is not affected by metric fluctuations.
On the contrary that of the wave function evaluated near the horizon atv, r is
sensitive to the metric fluctuations encountered fromJ + to where it lives.16 It is
this (unusual; see below) discrepancy in the modification of the phase at each point
which explains why the ensemble averaged one-point waves Eq. (30) govern this
two-point Green function.

Insteadusualexpectation values, such as, for instance, thein–in Green func-
tion with two points evaluated at fixedu on J + (or two nearby points close to
the horizon), arenot severely affected by the metric fluctuations because they are
not governed by the ensemble-averaged waves (30). The reason is that the ensem-
ble average is performedafter having computed the operator for each member
of the ensemble. (This is not a choice: the stochastic ensemble is merely a tool
to reproduce quantum mechanical expectation values. This quantum origin fixes
the rules of ensemble averaging without ambiguity.). In our case, this implies that
the shift Eq. (17) affectscoherentlythe phase at each point (see Section IV.A in
Barrabèset al., 2000). This guarantees that the shift drops out in the coincidence
point limit. This cancellation in turn guarantees that the asymptotic properties are
(almost) unaffected since the Green function possesses the usual Hadamard singu-
larity (Freedenhagan and Haag, 1990). By “almost” we mean that the corrections
scale like (κσ̄ )2 and thus are of order 1/M4. It should be pointed out that it is
the dynamically induced scale ¯σ3 and not the UV cutoff3 which governs these
corrections.

We would like to further emphasize the fact that the metric fluctuations
strongly affect the correlations between configurations specified onJ + and near

16One might wonder if the effects we are describing are not induced by the choice of working at fixedu
or at fixedv, r . To waive his qualms, we recall that Green functions have no physical meaning per se,
rather they are elements which appear in integrals describing transition amplitudes (for a discussion
of this point in a quantum gravitational context See Section 2 in Parentani, 1997). It is through this
channel that one can verify thatu is a physically meaningful coordinate onJ + sincedu|r = dt,
wheredt is the proper time of a particle detector onJ +. Thus when additional quantum mechanical
systems are coupled to the radiation field, the matrix elements governing transition amplitudes will
have, in their integrand, phase factors behaving likee−iλu in anycoordinate system. Similarly, upon
questioning what an infalling observer might see when crossing the horizon,v, r are meaningful
sincedr |v ∝ −dτ wheredτ is his proper time.
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the horizon without modifying the short distance behavior of the Green function.17

The radical difference of the impact of vacuum gravitational interactions follows
from the fact that asymptotic observers inevitably useout-states to probe the
physics. Therefore, the overlaps they consider will be automatically of thein–out
type since the Heisenberg state of the field is specified (prepared) before the col-
lapse. It is this two-states formalism giving rise to nondiagonal matrix elements
(Massar and Parentani, 1996) (exactly like in anS-matrix formulation; (Hooft,
1990, 1996) which is at the origin of the difference: the metric fluctuations cannot
coherently affect configurations specified in the ‘ket’ onJ − and in the ‘bra’ on
J +; hence the coherence is lost. (Notice that when computing induced emission
probabilities, one automatically considers overlaps betweenout-states specified
onJ + and some early state specified onJ −. This explains why induced emission
probabilities are washed out.) On the contrary, infalling observers have access only
to the near horizon behavior of the Green function in terms ofin configurations.
Hence coherence is maintained for them.

7. CONCLUSIONS

We have studied the effects induced by the gravitational interactions governed
by Eq. (12). Even though we worked out only the lowest order inG (σ̄3 ∝ G) we
believe that our main result is robust: We see no reason for higher order terms to
suppressthe entanglement ofφ− with φ+ so as to give ¯σ3 = 0, therebyrecovering
trans-Planckian correlations. Indeed higher order modifications to Eqs. (26) and
(27) should be of the type (Gω2)n and therefore will not affect the low frequency
behavior of Eq. (27), thereby leaving the effective spread ¯σ3 essentially untouched.
Moreover, when considering the effects of higher angular momentum modes, as
indicated by Casheret al. (1997),σ̄ should belarger than our estimate based on
s-modes because the effects of higher angular momenta should add incoherently.

In brief, given that gravitational interactions grow without bound near the
horizon, we claim that the entanglement ofφ− with φ+ is unavoidable and univer-
sal. (By universal we mean that a similar entanglement would also be found when
considering the coupling ofφ to other quantum fields such as massive ones.) The
entanglement will then prevent the unbounded growth of frequencies encountered
in the free field theory and will be accompanied by the reorganization of the de-
scription of vacuum. That is, whenr → 2M , the usual states of the free field theory

17This clearly illustrates that the physics seen by infalling observers completely differs from that
reconstructed from observers at large distance from the hole. This is similar to what was advocated
in Kiem et al. (1995). However, the fact that thein–out Green function obeys Eq. (30) indicates
that the near horizon physics is unaccessible and therefore lost to remote observers. Thus it seems
that these two descriptions could not obey the “complementarity principle” (Davieset al., 1976). By
“complementary to each other,” it was meant that the two descriptions are both complete, like the
position and momentum representations of the same vector state in quantum mechanics.
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which give rise to the notion of on-shell asymptotic particles provide bad approx-
imations of the true eigenstates (still characterized by the Killing energyλ since
the situation is stationary) of the interacting theory. It is the growing discrepancy
which leads to the ‘dissipation’ of the amplitude in Eq. (30).

We also claim that the radiative corrections encoding dissipation are finite
because only low frequencyω ' κ infalling configurations contribute to them.
Indeed, in the UV regime for both infalling and outgoing configurations, the ex-
pressions coincide with those evaluated in the tangent plane and are Minkowskian
in character. Hence the high frequency regime cannot contribute to the effects
which break Lorentz invariance. (This still needs to be confirmed by an explicit
calculation and is presently under examination.)

We would like to conclude this work by several remarks on related aspects of
quantum gravity and black hole physics.

First, we point out the similarity between the above effects induced by the
metric fluctuations representing gravitational interactions in the vacuum and those
attributed (Garay, 1998) to “foam.” By foam we mean quantum gravitational con-
figurations which radically affect the smoothness of space–time at short distance.
(They might arise from gravitational instantons (Hawking, 1978) or even stringy
effects (Amati, 1989).) In all cases, the replacement of free field propagation in a
fixed background by the appropriate interacting model might lead to very similar
(universal?) deviations when analyzing the departure from the free field descrip-
tion that all models possess at large distances. Therefore, these first deviations
might be described by some effective mesoscopic theory of space–time proper-
ties which would essentially signal the existence of a minimal resolution length
(Kempf and Mangano, 1997), the equivalent of our ¯σ , in the otherwise local field
theory.

Second, we conjecture that ¯σ (properly computed so as to include the con-
tribution of higher angular momentum modes) shouldalso be the length scale
which enters in the entanglement description of the black hole entropy (Jacobson,
1994). We recall that when using free field in a given space time, the entangle-
ment diverges owing to the unbounded character of the reservoir of high energy
modes. To get a finite entropy density per unit area, some cutoff should be intro-
duced. We propose that the cutoff defining the black hole entropy should be the
dynamically induced lengthscale ¯σ (N), i.e., the length scale at which correlations
between configurations onJ + and the near horizon region get lost whenN quan-
tum fields contribute to the entropy and therefore to the near horizon gravitational
interactions.

APPENDIX: THE LARGE- N LIMIT

We briefly mention several interesting features of the largeN limit which
illuminate the problems we addressed.
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The semiclassical description of quantum processes occurring in a curved
background is based on the following equations:

Gµν = 8πG 〈9|Tµν |9〉 (32)

¤gφ̂ = 0 (33)

In Eq. (33) the field operator propagates in the classical geometryg = g9µν which
is a solution of Eq. (32) driven by the expectation value〈9|Tµν |9〉 evaluated in
the state|9〉 using Eq. (33). In this Sense, Eqs. (32) and (33) are self-consistent
(Hartree) approximations.

It is quite reasonable that this approximation correctly predicts the time evo-
lution of certainquantities incertaincircumstances,e.g., therate of mass lossof
a large black hole. However, the criteria which characterize the validity range of
the predictions obtained from Eqs. (32), and (33) are not known. An obstacle in
finding these criteria is the identification of the “small parameter(s)” which control
the deviations between the exact evolution and that predicted by the semiclassical
equations.

A rather formal answer to these questions is provided by considering a large-
N limit, where N is the number of copies of theφ field. The simplest way to
understand why the semiclassical equations govern the large-N limit is by con-
sidering the path integral approach of matrix elements. By duplicatingN times
φ in Eq. (8) and first integrating over them with a fixed metrich, the one-loop
effective action forh contains an overall prefactorN when Newton’s constantG is
expressed asG = ξ/N. Therefore, in a largeN limit, the path integral overh can
be evaluated by a saddle point approximation. The stationary phase condition then
gives rise to Eq. (32) and the spread around the saddle point scales likeN−1/2. In
this vision, the validity of the semiclassical equations purely relies on a statistical
argument, as in a thermodynamic limit. The weakness of this very general argu-
ment is the absence of a hierarchy of the length scales governing the processes
under examination, unlike what is found when a Born–Oppenheimer treatment is
applied to quantum gravity (Massar and Parentani, 1998).

More interestingly the large-N limit also makes predictionsbeyondthe semi-
classical equations. For instance, in the limitN →∞ with GN fixed, the short
distance behavior of the graviton propagator is modified (see Martin and Verdaguer,
2000; Tamboulis, 1977). In Minkowski vacuum, these modifications are of course
Lorentz invariant. However, in a thermal bath or a curved background, the cor-
rection terms will no longer possess the Lorentz invariant form. Hence they can
induce the effects we are seeking: a dynamically induced scale which breaks the
(local) Lorentz invariance that the uninteracting theory possessed. Moreover, only
low energies (i.e., energies comparable to the temperature) can contribute to this
new scale because in the UV limit all expressions tend to their Minkowski vacuum,
and hence Lorentz-invariant, form. Hence there should not be any additional UV
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divergences in the expressions giving rise to the new scale, as it is the case for the
corrections to the self-energy of an electron immersed in a thermal bath.

To further strengthen the relations with what we did in Section 6, it is in-
structive to see how the semiclassical treatment emerges from Eq. (24) viewed as
generating perturbatively the connected Feynman diagrams when expandingei Sint

in powers ofSint . In this description, one finds that the Green function is a double
sum of powers ofN andG which possess the following properties:

• The power ofN is equal or inferior to that ofG.
• The semiclassical treatment corresponds to the leading series: the set of

graphs weighted by (GN)n. All graphs are one-particle reducible and they
are governed by the one-point function〈Tµν〉. Upon summing this series,
one identically recovers the Green function evaluated in the “mean” geom-
etry g9µν , the solution of Eq. (32). In this series all graphs are one-particle
reducible and governed by the one-point function〈Tµν〉.
• Having summed up the leading series in (GN)n, our treatment corresponds

to thenextseries: the set of graphs weighted by (G2 N)n. All graphs are
two-particle reducible and they are governed by the connected two-point
function〈TµνTαβ〉C. Upon summing this new series, one obtains the Green
function evaluated in the stochastic ensemble governed by Eq. (27). This
second series should also be related to the use of the above-mentioned
large-N modified graviton propagator in the place of the unperturbed one.
(We are presently trying to prove this point.)

In brief, N is a parameter which organizes the double sum of graphs into a sum
of nonperturbative series whosemth series containing all powers of (GmN) is
governed by themth correlation function ofTµν when the former series have been
first summed up.

The physical question raised by these results is the following: given the di-
mensionality ofG = l 2

Planck, can one infer that high orders inm (the relative power
of G with respect to that ofN) become relevant only for high (Planckian) energies?
We conjecture that this is the case: the sorting out of graphs in terms ofm is effec-
tively an expansion in the energy of the processes involved in the matrix element
under consideration. This is what seems to emerge from our analysis. As indicated
by Eqs. (30) and (31), the semiclassical description of the correlations breaks down
whenr − 2M ' σ̄ , i.e., when the energy of a modepr = λ/(r/2M − 1) reaches
the new scale 1/σ̄ .18 We thus find, as in Massar and Parentani (1998), that the
validity of the semiclassical equations relies on ahierarchyof energy scales. In-
deed, for a large black hole, ¯σ ¿ M even whenN = 1. ThusN isnot necessaryto

18Notice that ¯σ scales asN−1/2(GN/M). This writing expresses that in the large-N limit at fixedGN,
i.e., with anN-independent Hawking flux, ¯σ → 0 like N−1/2, thereby verifying that in this limit the
scale which signals the breakdown of the semiclassical description indeed vanishes.
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justify the validity of the semiclassical description. It is rather a useful parameter
which helps sorting out the different contributions in radiative corrections.
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